Benutzerspezifische Werkzeuge
:: Universität » Fakultät » Institut :: Startseite Mitglieder Christian Hainzl
Artikelaktionen

Christian Hainzl

Eine Ebene höher
Dienstadresse
Prof. Dr. Christian Hainzl
Mathematisches Institut
Auf der Morgenstelle 10
72076 Tübingen
Germany
Zimmer C6P34
Telefon +49-(0)7071-29-78563
Fax +49-(0)7071-29-5036
E-Mail


Publikationen

R. Frank, C. Hainzl, R. Seiringer, J. P. Solovej
Microscopic derivation of Ginzburg-Landau theory.
J. Amer. Math. Soc. 25 (2012), 667–713.

[ arxiv.org/abs/1102.400 ]

C. Hainzl, M. Lewin, C. Sparber
Ground state properties of graphene in Hartree-Fock theory
Preprint, 2012.

[ arxiv.org/1203.5016 ]

C. Hainzl, R. Seiringer
Low Density Limit of BCS Theory and Bose-Einstein Condensation of Fermion Pairs
Lett. Math. Phys. 100, 2 (2012), 119-138.

[ arxiv.org/1105.1100 ]

C. Hainzl, M. Lewin, E. Lenzmann, B. Schlein
On Blowup for time-dependent generalized Hartree-Fock equations
Ann. Henri Poincare 11, 6 (2010), 1023.

[ HLLS.pdf (406.4 kB) ]

On the Static and Dynamical Collapse of White dwarfs
Contemp. Math. 529 (2010), 177–188.

[ AZ09-hainzl.pdf (183.3 kB) ]

C. Hainzl, R. Seiringer
A linear criterion for solutions of non-linear equations, with application to the BCS gap equation
Contemp. Math. Spectral and scattering theory for quantum magnetic systems. (2009), 101–104.

[ banach3.pdf (102.0 kB) ]

C. Hainzl, M. Lewin, J. P. Solovej
The thermodynamic limit of quantum Coulomb systems. Part II: Applications
Adv. Math. 221, 2 (2009), 488–546.

[ Coulomb-Part-II.pdf (485.1 kB) ]

C. Hainzl, M. Lewin, J. P. Solovej
The thermodynamic limit of quantum Coulomb systems. Part I: General Theory
Adv. Math. 221, 2 (2009), 454–487.

[ Coulomb-Part-I.pdf (292.2 kB) ]

C. Hainzl, B. Schlein
Stellar Collapse in the time dependent Hartree-Fock approximation
Commun. Math. Phys. 287 , 2 (2009), 705–717.

[ HF8.pdf (198.8 kB) ]

C. Hainzl, M. Lewin, E. Sere
Existence of Atoms and Molecules in the mean-field approximation of No-photon Quantum Electrodynamics.
Arch. Ration. Mech. Anal 192 , 3 (2009), 453–499.

[ bdf-hvz.pdf (430.9 kB) ]

C. Hainzl, M. Lewin, R. Seiringer
A non-linear model for relativistic electrons at positive temperature
Rev. Math. Phys. 20 , 10 (2008), 1283–1307.

[ bdf_temp-HLSei.pdf (263.0 kB) ]

Spectral properties of the BCS gap equation of superfluidity
Mathematical results in quantum mechanics, World Sci. Publ., Hackensack, NJ (2008), 117–136.

[ HS-BCSQmath10.pdf (233.9 kB) ]

C. Hainzl, E. Hamza, R. Seiringer, J. P. Solovej
The BCS functional for general pair interactions
Commun. Math. Phys 281, 2 (2008), 349-367.

[ HHSS.pdf (252.4 kB) ]

C. Hainzl, R. Seiringer
The BCS critical temperature for potentials with negative scattering length
Lett. Math. Phys. 84, 2-3 (2008), 99–107.

[ scattering-length.pdf (180.7 kB) ]

C. Hainzl, M. Lewin, J. P. Solovej
The thermodynamic limit for Quantum Coulomb systems: A new approach,
Mathematical results in quantum mechanics, World Sci. Publ., Hackensack, NJ, (2008), 97–116.

[ thermo_proc.pdf (244.4 kB) ]

R. Frank, C. Hainzl, S. Naboko, R. Seiringer
The critical temperature for the BCS equation at weak coupling
Journal of Geometric Analysis 17, 4 (2007), 549–567 .

[ FHNS-jga.pdf (96.0 kB) ]

C. Hainzl, M. Lewin, J. P. Solovej
Mean-field approximation in Quantum Electrodynamics. The no-photon case
Commun. Pure Appl. Math. 60 (2007), 546–595.

[ meanfieldqed.pdf (340.5 kB) ]

C. Hainzl, M. Lewin, E. Sere
Existence of a stable polarized vacuum in the Bogoliubov-Dirac-Fock approximation
Commun. Math. Phys 257, 3 (2005), 515–562.

[ vacuum.pdf (344.5 kB) ]

C. Hainzl, M. Hirokawa, H. Spohn
Binding energy for hydrogen-like atoms in the Nelson model
J. Funct. Analysis 220, 2 (2005), 424–459.

[ nelson-hhs.pdf (205.5 kB) ]

C. Hainzl, M. Lewin, E. Sere
Self-consistent solution of the polarized vacuum in a no-photon QED model
. Phys. A: Math. Gen. 38, 20 (2005), 4483–4499.

[ bdfren.pdf (192.2 kB) ]

C. Hainzl, M. Lewin, C. Sparber
Existence of global-in-time solutions to a generalized Dirac-Fock type evolution equation
Lett. Math. Phys. 72, 2 (2005), 99–113.

[ timebdf.pdf (232.9 kB) ]

On the Vacuum Polarization Density Caused by an External Field
Ann. Henri Poincare 5, 1137 - 1157 5 (2004), 1137–1157.

[ vacpol-ahp.pdf (246.1 kB) ]

I. Catto, C. Hainzl
Self-energy of one electron in non-relativistic QED
J. Funct. Anal. 207, 1 (2004), 68–110.

[ self.pdf (338.5 kB) ]

I. Catto, P. Exner, C. Hainzl
Enhanced binding revisited for a spinless particle in non-relativistic QED
J. Math. Phys. 45, No. 11, 4174-4185 45, 11 (2004), 4174–4185.

[ enhb-ceh.pdf (155.6 kB) ]

C. Hainzl, V. Vougalter, S. Vugalter
Enhanced binding in non-relativistic QED
Commun. Math. Phys. 233 (2003), 13–26.

[ enhbinding.pdf (227.9 kB) ]

One non-relativistic particle coupled to a photon field
Ann. Henri Poincare 5 (2003), 1137–1157.

[ selfenergy.pdf (239.9 kB) ]

C. Hainzl, R. Seiringer
Mass renormalization and energy level shift in non-relativistic QED
Adv. Theor. Math. Phys. 6 (2002), 847.

[ lambshift.pdf (201.9 kB) ]

C. Hainzl, R. Seiringer,
A discrete density matrix theory for atoms in strong magnetic fields
Commun. Math. Phys 217 (2001), 229–248.

[ ddm.pdf (337.6 kB) ]

Forschungsinteressen und Projekte

  • Many body Quantum Mechanics
  • Non-relativistic Quantum Electrodynamics
  • Nonperturbative Relativistic QED
  • Functional Analysis
  • Non-linear Dirac-type evolution problems
  • The mathematical aspects of the BCS theory of superfluidity
  • Gravitational systems
  • Dirac's equation coupled to Einstein's theory of gravity
« April 2014 »
So Mo Di Mi Do Fr Sa
1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30
Vorträge
Mathematische Physik
Prof. Rainer Nagel:
What does the spectral theorem say?
M1,
24.04.2014
weitere Vorträge…
 

Powered by Plone CMS, the Open Source Content Management System

Diese Website erfüllt die folgenden Standards: